SARS Virus

©Dr. Kathryn Holmes (U. Colorado Health Sciences Center, Denver 303-315-7329).

Coronavirus Biology and Pathogenesis

May 30, 2003

Kathryn Holmes
Department of Microbiology
University of Colorado Health
Sciences Center, Denver

Coronaviruses
Classification
Structural proteins
Replication
Drug targets

Coronavirus diseases of man and animals Pathogenesis Immune responses

Epidemiology

Vaccines

Coronaviruses: Classification by EM Almeida and Tyrrell (1967)

Coronavirus Replication

Coronaviruses, host ranges and diseases

Genetic			Diseases (infection sites)		
Group	Virus	Host	Respiratory	Enteri	c Other
I	HCoV-229E	human	X		
	TGEV	pig	(X)	X	
	PRCoV	pig	X		
	PEDV	pig		X	
	FIPV	cat	X	X	Systemic
	FCoV	cat		X	
	CCoV	dog		X	
2	HCoV-OC43	human	X	??	
_	MHV	mouse	X	X	CNS, systemic
	RCoV	rat	X		Eye, GU
	HEV	pig		X	CNS
	BCoV**	cattle	X	X	
3	IBV	chicken	X	X	Kidney
3	TCoV	turkey	X	X	Ridiley
		•			
4??	SARS-CoV	human	X	(X)	(Kidney)

NEW TAXONOMY

Nidoviruses share replication strategy, but differ in genome size and virion structure

The Spike Glycoprotein is a Coronavirus Virulence Factor

- *Spike glycoprotein (S) determines:
 - *Receptor binding and specificity
 - *Membrane fusion, cell fusion
 - *Protease susceptibility and
 - activation
 - *Deletions in S1 alter tissue tropism
 - *pH of conformational changes in S
 - *Virus neutralization by antibodies

Type 1 viral fusion protein

Enveloped Virus Entry

Type I Fusion Protein

Fusion domains of Class I viral fusion proteins

Coronaviruses, host ranges and receptors

Genetic					
Group	Virus	Host	Receptor		
1	HCoV-229E	human	human aminopeptidase N (hAPN)		
	TGEV	pig	porcine APN		
	PRCoV	pig	porcine APN		
	PEDV	pig			
	FIPV	cat	feline APN		
	FCoV	cat	feline APN		
	CCoV	dog	canine APN		
2	HCoV-OC43 MHV RCoV HEV BCoV	human mouse rat pig cattle	murine CEACAM1	Co-receptor 9-0AcNA 9-0AcNA 9-0AcNA 9-0AcNA	
3	IBV TCoV	chicken turkey			
4??	SARS-CoV	human			

Aminopeptidase N (APN or CD13)

APN Model aa 388-392

Modified from Riemann et al., Immunology Today 20: 83-88 (1999)

- *150 kDa type II glycoprotein
- Metalloprotease expressed in a variety of tissue and cell types
- Converts oligopeptides to amino acids
- Degrades regulatory peptides and neuroactive peptides
- *Antigen processing and presentation
- Plays a role in the migration of human tumor cells
- **★**Group 1 coronavirus receptor

Murine CEACAM1a

The receptor for murine coronavirus MHV

What the virus sees, or the view from the top

C-C' loop, I41 mutations

Murine 1a Human 1 Rat 1 Murine 1b

Plaques of mutant viruses on BHK cells expressing mutant receptor

Introduction of mutations into the genomic RNA of coronaviruses

Reverse genetics using full length infectious clone

Targeted RNA recombination

TARGETED RNA RECOMBINATION

JHM ML-FVFILLLPSCLGYIGDFRCIOTVNYNGNNASAPSISTEAVDVSKGLGTYYVLDRVYLN Mouse specific A59 Ι IT M- 1 FV * 79 33 82 NVSAPSISTETVEVSOGLGTYYVLDRVYLNATLLLTGYYPVDGSKFRNLALTGTNSVS MHV-A59 NASAPSISTEAVDVSKGRGTYYVLDRVYLNATILLITGYYFVDGSNYRNIALTGTNTIS MHV-JHM other MHVs NASAPSVVIEVVDVSKGIGTYYVLDRVYLNATILLITGYYPVESSMYRNMALTGINAIS S21BHK+i NVSAPSISTETVDVSOGLGTYYVLDRVYLNATILLTGYYPVDGSKFRNLALTGTNSVS NARAPSVSTEVVDVSKGLGTYYVLDRVYLNATILLTGYYPVDGSMYRNMALMGTNTLS SDAV (rat) DTGAPSISTDIVDVTNGLGTYYVLDRVYLNTTLLLNGYYPTSGSTYRNMALKGTLLLS BCV (bovine) (human) DTCPPPISTDTVDVTNGLGTYYVLDRVYLNTTFLLNGYYPTSGSTYRNMALKGSVLLS 240 JHM DVKPPICLLKRNFTFNVNAPWLYFHFYOOGGTFYAYYADKPSATTFLFSVYIGDILTOYF DAF A59 I SLCAF ELSVI L 162 183 COLPYTOCKPNTNGNKLIGEWHTDVKPPICVIKRNFTLNVNADAEYFHFYOHGGTFYAYYADKP MHV-A59 MHV-JHM <mark>COLEYTECKPNTNGN</mark>RVIGEWHTDV<mark>K</mark>PPICLI<mark>KRNFTFNVNA</mark>PWLYFHFYOOGGTFYAYYAD</mark>KP other MHVs CLLEYTPCKPNTGGNSIIGEWHIELKSLVAIIKRNFTFDVNAEWLYFHFYOOGGTFYAYYADVG S21BHK+i COLEYTDCKPNTNGNKLIGEWHTDVKPPICVLKRNFTLNVNADAEYFHFYOHDGIFYAYYADKP SDAV (rat) COLPHTDCKPNTGGNTLIGFWHTDLRPPVCILKRNFTFNVNAEWLYFHFYOOGGTFYAYYADVS

CEYPHTICHPNL-GNKRVELWHWDTCVVSCLYKRNFTYDVNADYLYFHFYOEGGTFYAYFTDTG

CEYPOTICHPNL-GNHRKELWHLDTGVVSCLYKRNFTYDVNADYLYFHFYOEGGTFYAYFTDTG

BCV (bovine)

OC43 (human)

MHV viruses with substitutions in S differ in growth on mouse cells

Point mutations in S can change receptor interactions

Coronaviruses
Classification
Structural proteins
Replication
Drug targets

Coronavirus diseases of man and animals

Pathogenesis
Immune responses
Epidemiology
Vaccines

A coronavirus with several diseases and a naturally extended host range

Bovine coronavirus (Pneumoenteric)

Calf diarrhea
Winter dysentery
Calf respiratory disease
Shipping fever

Feline enteric coronavirus and feline infections peritonitis

Deletions or mutations in Spike protein change virulence and tissue tropism

TGEV

Enteric disease in piglets

Deletion of 225 aa in spike

or mutation

PRCoV

Mild respiratory disease of pigs Interstitial pneumonia

PRCoV provides partial protection from TGEV

HCoV-229E in Volunteers

Chilvers et al, Eur. Resp. J. 18:965-970 (2001)

11 volunteers were inoculated intranasally with HCoV-229E.

Cold symptoms were recorded daily and nasal epithelium studied.

Overall symptoms

No symptoms

Number experiencing

"Possible cold"

4 Headache

5 Definite cold

4 Cough
Fever

2 Disruption

of nasal epithelium

11

No animal model or reservoir

Genetically stable viruses

Repeated infections common

Seasonal outbreaks

No drugs or vaccines

SARS

Poutanen, et al., NEJMed, April, 2003

Figure 3. The Course of Disease in Patient 8.

A 76-year-old man (Patient 8), who was exposed to Patient 2 on March 7, had fever (temperatures of up to 40°C), diaphoresis, and fatigue three days later on March 10. A chest radiograph was obtained on March 14, revealing right-upper-lobe and bibasilar interstitial infiltrates (Panel A). He subsequently noted a nonproductive cough and increasing dyspnea and was admitted to the hospital on March 16, demonstrating bilateral patchy air-space disease with relative sparing of the right lung base and left upper lobe (Panel B). He was admitted to the intensive care unit and was intubated and received mechanical ventilation because of respiratory distress. Progressive respiratory failure and worsening of the findings on chest radiography occurred (Panel C), and the patient died on March 21.

SARS

Syndrome Incubation period Case fatality rate **Transmission**

Immune response

Acute interstitial pneumonia

~4-10 days

~4-50%

Human to human

Close contact, super spreaders

Neutralizing antibody; CTL?

Virus shedding

Pathogenesis

Persistent infection

Susceptible to reinfection ??

Duration uncertain

Respiratory, fecal, urine

Poorly understood

??

Targets for SARS Vaccines and Drugs

Some Targets for Drugs Against Coronaviruses

Blockade or inhibition of:

* Receptor interactions

Anti-R Mab blocks MHV infection in vitro and in vivo

SARS-CoV cell fusion inhibited by heptad repeat pentide of viral spike protein

Hilgenfeld models SARS 3CL protease, suggests inhibitor

Inhibitor of papain like protease tested

Replication and transcription

Oligonucleotide inhibitor of replication tested

* Inflammation

Acetyl esterase inhibitors inhibit gp2 CoV's in vitro

Coronavirus vaccines

Live attenuated vaccines

PEDV: passaged 90X in Vero cells

IBV: multiple serotypes, recombination are problems

Killed vaccines

Canine CoV vaccine

IBV

Vectored vaccines

Adenovector for lactogenic immunity to TGEV spike Baculovirus for TGEV S or S,M,N partly protects vs enteric challenge

Passive immunization

Neutralizing monoclonal antibody

Antibody dependent enhancement (ADE) with FCoV vaccines.

Research Priorities

```
How many coronaviruses are there?
     Genetic relationships?
     Host ranges?
     Virulence determinants?
Pathogenesis
Immune responses
Small animal model for SARS
Effects of mutations
Diagnostic tests
Vaccines
Drugs
```